a time series forecasting method for univariate data
a rule-of-thumb technique for smoothing time-series data using the exponential window function
simple exponential smoothing and triple exponential smoothing
AutoRegressive Integrated Moving Average (ARIMA) Models¶
autogression model, uses observations from previous time steps to predict future values using a regression equation
$$y_t = c + \phi_{1}y_{t-1} + \phi_{2}y_{t−2} + ⋯ + \phi_{p}y_{t−p} + ε_{t}$$
moving average model, a linear combination of forecast errors
$$yt = c + \epsilon t + \theta_{1}\epsilon_{t−1} + \theta_{2}\epsilon_{t−2} + ⋯ + \theta_{p}\epsilon_{t−p}$$
ARIMA model
$$y^{'}_{t} = c + \phi_{1}y^{'}_{t−1} + ⋯ + \phi_{p}y^{'}_{t−p} + \epsilon_{1}\theta_{t−1} + ⋯ + \epsilon_{q}\theta_{t−q} + \theta_{t}$$
Seasonal ARIMA (SARIMA) model, add a linear combination of seasonal past values and forecast errors to ARIMA