Data Science
General
Terms
Chapter 1
Training
Chapter 4
Resampling
Classification
Chapter 3
SVM
Chapter 5
Encoder
Scaler
Imbalanced Data
Small Data
Ensemble
Chapter 7
Dimensional Reduction
Chapter 8
Feature Engineering
Distance
Fair ML
Models
Learning Types
FAQ
End to End
Preprocessing
Checklist
Appendix B
Regression
Chapter 2
Pipeline
Chapter 2
Classification
Multiple Classes
Classification
Binary Classes
Regression Models
Linear Regression
Chapter 4
SGD Regression
Chapter 4
Batch GD Regression
Chapter 4
Mini-batch Regression
Chapter 4
Ridge Regression
Chapter 4
Lasso Regression
Chapter 4
Elastic Net
Chapter 4
k-Nearest Neighbors Regression
Decision Tree Regression
Random Forest Regression
Ada Boosting Regression
Gradient Boosting Regression
XGBoost Regression
Support Vector Regression
Chapter 5
Classification Models
SGD Classifier
Decision Tree Classifier
Random Forest Classifier
Extra Trees Classifier
Ada Boosting Classifier
Gradient Boosting Classifier
Logistic Regression
Chapter 4
Softmax Regression
Chapter 4
Naive Bayes Classifier
SVM
Chapter 5
k-Nearest Neighbors
LightGBM
XGBoost Classifier
Unsupervised Models
GMM
Chapter 9
Clustering
Chapter 9
Kernel Density Estimation (KDE)
Original Model
Anomaly Detection
Multivariate Model
Anomaly Detection
Semi-Supervised Learning
Multi-Output
KNN Classifier
Linear Regression
RidgeCV
KNN Regressor
Extra Trees Regressor
DecisionTreeRegressor
Projects
Kickstarter
California Housing Price
Titanic Dataset
Spam Email Classifier
MNIST KNN
Bank Note Authentication
PU
Scikit Learn
Common Terms
API
Gaussian Processes
Cross Decomposition
Naive Bayes
Decision Tree
Chapter 6
Ensemble Learning
Chapter 7
Multioutput
Feature Selection
Semi-Supervised Learning
Supervised NN
GMM
Chapter 9
Clustering
Chapter 9
Biclustering
Covariance Estimation
Anomaly Detection
Chapter 9
Density Estimation
Unsupervised NN
Metrics
Curves
Scoring
Feature Extraction
Dimension Reduction
Chapter 8
Classifiers
Face completion
Generative Models
Kernel Density Estimation (KDE)
Time-Series
Introduction
Chapter 1
Exponential Smoothing
Analysis
Chapter 2
Pandas Time Series
Sktime
Deep Learning
GAN
AutoML
Intro
dabl
auto-sklearn
Visualization
Pandas Plot
Yellowbrick
Dataset
OpenML
UCI Machine Learning Respository
Kaggle Datasets
Amazon's AWS Datasets
Public Datasets
MATLAB data sets
Data Portals
Open Data Monitor
Quandl
Wiki List
Quora
Reddit
Online Platform
Kaggle
Google Colab
Seedbank
Courses
Data Mining and Text Mining
UIC
Machine Learning
Adrew Ng
People
Geoffrey E. Hinto
Books
Practical Econometrics
Forecasting: Principles and Practice
Machine Learning for Time-Series with Python
Engineer Statistics
Python Data Science Handbook
Hands-on Notebook 2
Hands-on Notebook
Others
Tensorflow Certificate
Main Types of Neural Networks
Generalized N-body Problems
Nearest Neighbor
Reference
A.I. Wiki
MIT AI
Scikit User Guide
Scikit Tutorial
Google Colab
Kaggle Tutorial
Kaggle Learn
Statistics
Deep Learning Repositories
Bloomberg
Machine Learning Mastery
15-hours Machine Learning
Intro to Statistical Learning
The Elements of Statistical Learning
Machine Learning Mastery
Data Science Central
Dataquest Tutorials
Deeplearning.net
Towards Data Science
AstroML