General

  • TermsChapter 1
  • TrainingChapter 4
  • Resampling
  • ClassificationChapter 3
  • SVMChapter 5
  • Encoder
  • Scaler
  • Imbalanced Data
  • Small Data
  • EnsembleChapter 7
  • Dimensional ReductionChapter 8
  • Feature Engineering
  • Distance
  • Fair ML
  • Models
  • Learning Types
  • FAQ
  • End to End

  • Preprocessing
  • ChecklistAppendix B
  • RegressionChapter 2
  • PipelineChapter 2
  • ClassificationMultiple Classes
  • ClassificationBinary Classes
  • Regression Models

  • Linear RegressionChapter 4
  • SGD RegressionChapter 4
  • Batch GD RegressionChapter 4
  • Mini-batch RegressionChapter 4
  • Ridge RegressionChapter 4
  • Lasso RegressionChapter 4
  • Elastic NetChapter 4
  • k-Nearest Neighbors Regression
  • Decision Tree Regression
  • Random Forest Regression
  • Ada Boosting Regression
  • Gradient Boosting Regression
  • XGBoost Regression
  • Support Vector RegressionChapter 5
  • Classification Models

  • SGD Classifier
  • Decision Tree Classifier
  • Random Forest Classifier
  • Extra Trees Classifier
  • Ada Boosting Classifier
  • Gradient Boosting Classifier
  • Logistic RegressionChapter 4
  • Softmax RegressionChapter 4
  • Naive Bayes Classifier
  • SVMChapter 5
  • k-Nearest Neighbors
  • LightGBM
  • XGBoost Classifier
  • Unsupervised Models

  • GMMChapter 9
  • ClusteringChapter 9
  • Kernel Density Estimation (KDE)
  • Original ModelAnomaly Detection
  • Multivariate ModelAnomaly Detection
  • Semi-Supervised Learning

    Multi-Output

  • KNN Classifier
  • Linear Regression
  • RidgeCV
  • KNN Regressor
  • Extra Trees Regressor
  • DecisionTreeRegressor
  • Projects

  • Kickstarter
  • California Housing Price
  • Titanic Dataset
  • Spam Email Classifier
  • MNIST KNN
  • Bank Note AuthenticationPU
  • Scikit Learn

  • Common Terms
  • API
  • Gaussian Processes
  • Cross Decomposition
  • Naive Bayes
  • Decision TreeChapter 6
  • Ensemble LearningChapter 7
  • Multioutput
  • Feature Selection
  • Semi-Supervised Learning
  • Supervised NN
  • GMMChapter 9
  • ClusteringChapter 9
  • Biclustering
  • Covariance Estimation
  • Anomaly DetectionChapter 9
  • Density Estimation
  • Unsupervised NN
  • Metrics
  • Curves
  • Scoring
  • Feature Extraction
  • Dimension ReductionChapter 8
  • Classifiers
  • Face completion
  • Generative Models

  • Kernel Density Estimation (KDE)
  • Time-Series

  • IntroductionChapter 1
  • Exponential Smoothing
  • AnalysisChapter 2
  • Pandas Time Series
  • Sktime
  • Deep Learning

  • GAN
  • AutoML

  • Intro
  • dabl
  • auto-sklearn
  • Visualization

  • Pandas Plot
  • Yellowbrick
  • Dataset

  • OpenML
  • UCI Machine Learning Respository
  • Kaggle Datasets
  • Amazon's AWS Datasets
  • Public Datasets
  • MATLAB data sets
  • Data Portals
  • Open Data Monitor
  • Quandl
  • Wiki List
  • Quora
  • Reddit
  • Online Platform

  • Kaggle
  • Google Colab
  • Seedbank
  • Courses

  • Data Mining and Text MiningUIC
  • Machine LearningAdrew Ng
  • People

  • Geoffrey E. Hinto
  • Books

  • Practical Econometrics
  • Forecasting: Principles and Practice
  • Machine Learning for Time-Series with Python
  • Engineer Statistics
  • Python Data Science Handbook
  • Hands-on Notebook 2
  • Hands-on Notebook
  • Others

  • Tensorflow Certificate
  • Main Types of Neural Networks
  • Generalized N-body Problems
  • Nearest Neighbor
  • Reference

  • A.I. Wiki
  • MIT AI
  • Scikit User Guide
  • Scikit Tutorial
  • Google Colab
  • Kaggle Tutorial
  • Kaggle Learn
  • Statistics
  • Deep Learning Repositories
  • Bloomberg
  • Machine Learning Mastery
  • 15-hours Machine Learning
  • Intro to Statistical Learning
  • The Elements of Statistical Learning
  • Machine Learning Mastery
  • Data Science Central
  • Dataquest Tutorials
  • Deeplearning.net
  • Towards Data Science
  • AstroML